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Automated Machine Learning
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Automated Machine Learning (AutoML)
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Machine Learning Systems
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Figure source: Accurate protein structure prediction by embeddings and deep learning representations, Drori et al, 2019.

ML System



Transformers



Transformers

• Text

• Task agnostic architecture

• Task specific datasets of 1-100k samples for fine tuning
or

• Few shot learning



Fine Tuning

• Examples for specific task
• Gradient updates



Meta Learning in Language Models

• Humans don’t require so many examples for new tasks 
instead use a handful

• Avoid collecting domain specific datasets and fine tuning 
for new tasks

• Broad learning during training
• Adapt to tasks at runtime



Few-Shot Learning

• Only examples at runtime: number of examples k, 1, 0
• K examples of task

– Translate English to Chinese
– how are you -> ni hao ma
– 1,2,3 -> yi, er, san

• 1 example of task
– Translate English to Chinese
– how are you -> ni hao ma

• No examples, language description
– Translate English to Chinese



Math Word Problems
and Question Answering



Math Word Problems and Question Answering

• Question
“At the fair Adam bought 13 tickets. After riding the ferris 
wheel he had 4 tickets left. If each ticket cost 9 dollars, 
how much money did Adam spend riding the ferris wheel?

• Answer
81



Math Word Problems Approaches

• Template-based methods
• Prediction of operators and operands
• Search space of binary expression trees
• Deep neural networks
• Reinforcement learning, building expression trees



Expression Tree

• Question
“At the fair Adam bought 13 tickets. After riding the ferris 
wheel he had 4 tickets left. If each ticket cost 9 dollars, 
how much money did Adam spend riding the ferris wheel?

• Answer
81

13 4

9-

*
Tree Expression

(13 - 4) * 9 = 81

x=13 y=4 z=9
(x op1 y) op2 z
x y op1 z op2



Prediction

• Probability over operators and operands
• Probability over trees



20 Years of Superhuman Game Playing
IBM Deep Blue vs. Kassparov 1997

Google AlphaGo vs. Lee Sedol 2016 18



• Deep neural network represents policy, value function, model

• Optimize loss function by stochastic gradient descent

Deep Reinforcement Learning
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● Video games
● Board games
● Rubik’s cube
● Protein folding
● Dialogue synthesis
● Automatic machine learning
● Robot control
● Self driving cars

Deep Reinforcement Learning Applications
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Motivation: Dual Process Theory
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Fast
Autonomous
May not require working memory

Slow
Involves mental simulation and decoupling
Requires working memory

Type 1

Type 2

Daniel Kahneman, Thinking Fast and Slow, 2011



Dual Process Theory: Simple Analogy
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34   =  ?2



Dual Process Theory: Simple Analogy
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30 x 30 = 900

34 x 34 = 34 x 30 + 34 x 4 34 x 30 = 30 x 30 + 4 x 30 34 x 4 = 30 x 4 + 
4 x 4

Type 1

Type 2

4 x 4 = 1630 x 4 = 1204 x 30 = 120



Dual Process Theory: Simple Analogy
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1156



Dual Process Theory: Simple Analogy
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Q: Second time, what is 34 ?

A: 1156 right away, since its now type 1, so we’ll keep the network which 
knows this rather than use previous network.

Q: Next, what is 34 , use 34 etc.

Dual process iteration with self play.

2

4 2



Expert Iteration
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DNN Tree 
Search

Anthony et al., Thinking fast and slow with deep learning and tree search, NeurIPS 2017.



AlphaZero
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DNN MCTS

Mastering chess and Shogi by self-play with a general reinforcement learning algorithm, Silver et al, 2018

DNN MCTS

self-play



Neural Network Loss Function
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● Minimize loss function

Neural network parameters

Neural network predicted value

Actual value

Neural network predicted probabilities

Actual search probabilities



• Transformer
• g’ is RL

Math Question Answering using a 
Transformer and Reinforcement Learning

X^ y^

T

D’

g’

f^

f^ = g’(D’,T)
y^ = f^(X^)



Reinforcement Learning

• State: graph, tree, expression
• Actions: selected operator and operands
• Reward: correct action or expression evaluation

13 4

9-

*
Tree Expression

(13 - 4) * 9 = 81



Meta 6.036 Lab 1

• Machine Learning prerequisite
• Max cap of 50 students



Meta 6.036 Lab 1
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Meta 6.036 Lab 1

• Transformer
• CNN



Meta 6.036 Lab 1



Meta 6.036 Lab 1

• Transformer
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Meta 6.036 Lab 1

• Transformer
• Expression tree
• Meta learning



Meta 6.036 Lab 1



Meta 6.036 Lab 1

• Transformer



Meta 6.036 Lab 1



Meta 6.036 Lab 1

• Transformer, CNN
• Computational graph, expression tree
• Meta learning



Meta 6.036 Lab 1



Meta 6.036 Lab 1

• Transformer, CNN
• Computational graph, expression
• Meta learning



Meta 6.036 Lab 1



Meta 6.036 Lab 1

• Transformer



Meta 6.036 Lab 1
0



Meta 6.036 Lab 1
0
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Meta 6.036 Lab 1

• Transformer
• Graph



Meta 6.036 Lab 1
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Meta 6.036 Lab 1

• Transformer
• Graph
• Meta Learning
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Meta 6.036 Lab 1

• Transformer
• Objectives

– Masked prediction
– Sequential 



Meta 6.036 Lab 1



Probabilistic Programming Example



Probabilistic Programming Example


